
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

APPLICATION PLACEMENT ON A CLUSTER OF SERVERS∗

BHUVAN URGAONKAR

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA, 16802, USA

ARNOLD L. ROSENBERG

Department of Computer Science
University of Massachusetts
Amherst, MA, 01003, USA

and

PRASHANT SHENOY Department of Computer Science
University of Massachusetts

Amherst, MA, 01003, USA

Received (received date)

Revised (revised date)
Communicated by Editor’s name

ABSTRACT

The Application Placement Problem (APP, for short) arises in hosting platforms:

clusters of servers that are used for hosting large, distributed applications such as Internet
services. Hosting platforms imply a business relationship between an entity called the
platform provider and a number of entities called the application providers. The latter
pay the former for the resources on the hosting platform, in return for which, the former

provides guarantees on resource availability for the applications. This implies that a
hosting platform should host only applications for which it has sufficient resources. The
objective of the APP is to maximize the number of applications that can be hosted on

the platform while satisfying their resource requirements. The complexity of the APP
is studied here, with the following results. The general APP is NP-hard; indeed, even
restricted versions of the APP may not admit polynomial-time approximation schemes.
However, several significant variants of the online version of the APP admit efficient

approximation algorithms.

Keywords: Approximation algorithm; Application placement; Hosting platform

1. Introduction

∗A portion of this work was presented at the 17th Intl. Conf. on Parallel and Distributed
Computing Systems (PDCS’2004).

1

Advances in computing technologies and falling hardware prices have combined

to make server clusters built using commodity hardware and software an increas-

ingly attractive alternative to large multiprocessor servers for many applications.

We study a mapping problem that arises in one such application, whose commercial

significance is growing rapidly. We consider the use of a server cluster as a hosting

platform (HP, for short) wherein the servers host large, distributed applications such

as Internet services. HPs can be shared or dedicated. In dedicated mode [1, 15],

either all servers in the HP run a single application (such as a Web search engine),

or each individual server is dedicated to a single application (such as dedicated Web

hosting services where each node runs a single application). In contrast, in shared

mode, [3, 17], the HP’s servers run a large number of different third-party applica-

tions (Web servers, streaming media servers, multi-player game servers, e-commerce

applications, etc.), with the number of applications typically exceeding the number

of servers. More specifically, in shared mode, each application runs on a subset of

the HP’s servers, and these subsets may overlap. Whereas dedicated HPs are used

for many niche applications that warrant their additional cost, economic reasons of

space, power, cooling and cost make shared hosting platforms an attractive choice

for many application hosting environments.

Shared HPs imply a business relationship between the platform provider (the

“owner” of the HP) and the application providers. The latter pay the former for

the resources on the platform, in return for which, the former gives some kind of

guarantees of resource availability for applications. The existence of guarantees

implies that an HP should admit only applications for which it has sufficient re-

sources. In the current paper, we take the number of applications that an HP able

to host (or, admit) to be an indicator of the revenue that it generates from the

hosted applications. The number of applications that an HP admits is related to

the application placement algorithm—that decides where on the cluster the different

components of an application get placed—that the HP employs. In this paper we

study properties of the Application Placement Problem (APP, for short): the prob-

lem of maximizing the number of applications that can be hosted on the HP. We

show that APP is NP-hard and, indeed, that even restricted versions of the APP

may not admit polynomial-time approximation schemes. We design and analyze

several approximation algorithms for the APP and present algorithms for its online

version.

Roadmap. In Section 2, we develop a formal setting for the APP and discuss

related work. Section 3 establishes the hardness of even approximately solving

the APP. Section 4 develops polynomial-time approximation algorithms for various

restriction versions of the APP. Section 5 begins to study the online version of the

APP, wherein new applications arrive dynamically. Section 6 discusses directions

for further work on this topic of increasing importance.

2. The Application Placement Problem

2.1. Notation and Definitions

2

We consider a hosting platform HP consisting of n servers (or, nodes), N1, N2, . . . , Nn,

each having a given (initial) capacity Ci (of “available resources”). Unless otherwise

noted, nodes are homogeneous, in the sense of having the same initial capacities.

The APP allocates portions of each node’s capacity to (one or more) applications.

Let A1, . . . , Am denote the applications to be placed on HP. For our purposes,

an application can be viewed as a set of requirements, i.e., demands for node ca-

pacity, expressed in discrete uniform units called capsules. For instance, a typical

online bookstore application may consist of three capsules—a Web server responsi-

ble for HTTP processing, a middle-tier Java application server that implements the

application logic, and a back-end database that stores catalogs and user orders. A

capsule is the smallest component of an application for the purposes of placement;

i.e., all processes, data, etc., belonging to a capsule must be placed on the same

node. Capsules provide a useful abstraction for logically partitioning an application

into sub-applications and for controlling the allocation of these sub-applications

onto nodes. For instance, if an application wants to ensure that certain components

are allocated to the same node (e.g., because they communicate a lot), then it could

bundle them as one capsule. Some applications—e.g., replicated Web servers—may

want all capsules to be allocated to distinct nodes, say to improve resilience in the

face of node failures: if a node hosting a capsule fails, there would still be capsules

on other nodes. We refer to this as the capsule placement restriction. We study the

computational complexity of APP both with and without the capsule placement

restriction.

Although each capsule in an application would generally require guarantees on

access to multiple resources, we consider here just a single resource, such as the CPU

or the network bandwidth. We adopt a simple model wherein a capsule specifies

its resource requirement as a fraction of the resource capacity of a node in cluster

HP; we thus assume that the resource requirement of each capsule is less than the

capacity of a node. A capsule C can be placed on a node N only if the sum of

C’s resource requirements and those of the capsules already placed on N does not

exceed N ’s resource capacity. We say that an application can be placed only if all of

its capsules can be placed simultaneously. Easily, there may be more than one way

in which an application can be placed on a cluster HP. We call the total number

of applications that a placement algorithm could place on HP as the size of the

placement. A node Ni, none of whose resources have been reserved (so that it still

has capacity Ci), is said to be empty.

We study two versions of APP, both requiring one to determine a maximum-

size placement of a set of m applications, A1, . . . , Am on a cluster HP of n empty

nodes.a

offline-APP: Determine a placement in any way.

online-APP: Determine a placement, one Ai at a time, while satisfying the fol-

lowing:

aNode Ni is empty if none of its resources have been reserved (so that it still has capacity Ci).

3

1. The Ai should be considered for placement in increasing order of their

indices i.

2. Once an Ai has been placed, it cannot be moved as subsequent Aj are

being placed.

An easy reduction from BIN-PACKING [13] (see Section 7) shows that APP is

NP-hard.

Lemma 1 The Application Placement Problem APP is NP-hard.

2.2. Related Work

We presume familiarity with standard notions of computational complexity, re-

ferring the reader to a source such as [13].

Two generalizations of the classical knapsack problem are relevant to our study

of APP: the Multiple Knapsack Problem (MKP) and the Generalized Assignment

Problem (GAP) [13]. In MKP, we are given a set of n items and m bins (knapsacks),

with each item i having a profit p(i) and a size s(i), and each bin j having a capacity

c(j). The goal is to find a subset of the items of maximum profit that has a feasible

packing in the bins. MKP is a special case of GAP where the profit and the size of

an item can vary based on the specific bin that it is assigned to. GAP is APX-hard

(meaning that a PTAS [Polynomial-time approximation scheme] is unlikely), but it

admits a 2-approximation algorithm [16]. This was the best result known for MKP

until a PTAS was presented for it in [5]. It should be observed that the offline

APP is a generalization of MKP where an item may have multiple components that

need to be assigned to different bins (the profit associated with an item is 1). It is

further shown in [5] that slight generalizations of MKP are APX-hard, leading one

to suspect that APP may also be APX-hard (and, hence, may not have a PTAS).

Another closely related problem is a “multidimensional” version of MKP wherein

each item has requirements along multiple dimensions, all of which must be satisfied

to successfully place it. Again, one seeks to maximize the total profit yielded by the

items that can be placed. A heuristic for this problem is described in [12]; however,

only simulated evaluations appear, with no analytical performance guarantees.

To the best of our knowledge, our work is the first to formulate and study the

version of APP that arises in hosting platforms.

3. The Hardness of Approximating APP

This section is devoted to exploring the complexity of APP. We show that even a

restricted version of APP may not admit a PTAS. The capsule placement restriction

is assumed to hold throughout this section.

The main technical tool here is the gap-preserving reduction. We paraphrase

from [8].

Gap-preserving reduction: Let Π and Π′ be two maximization problems.b A

gap-preserving reduction from Π to Π′ with parameters (c, ρ) and (c′, ρ′) is a poly-

bWe choose maximization problems only for definiteness.

4

time algorithm f with the following property. For each instance I of Π, algorithm

f produces an instance I ′ = f(I) of Π′. The maxima of I and I ′, say MAX(I) and

MAX(I ′), respectively, satisfy the following property:

MAX(I) ≥ c ⇒ MAX(I ′) ≥ c′ (1)

MAX(I) < c/ρ ⇒ MAX(I ′) < c′/ρ′. (2)

Here c and ρ (resp., c′ and ρ′) are functions of |I|, the size of instance I (resp., of

|I ′|, the size of instance I ′). Also, ρ(I), ρ′(I ′) ≥ 1.

Gap-preserving reductions can be used to demonstrate the hardness of approxi-

mating optimization problems, as follows. Say that we wish to establish the (likely)

poly-time inapproximability of problem Π′. Say that we have a polynomial-time

reduction τ from SAT to Π that ensures, for every boolean formula φ:

φ ∈ SAT ⇒ MAX(τ(φ)) ≥ c

φ 6∈ SAT ⇒ MAX(τ(φ)) < c/ρ.

Then composing this reduction with a gap-preserving reduction f from Π to Π′

gives a reduction f ◦ τ from SAT to Π′ that ensures:

φ ∈ SAT ⇒ MAC(f(τ(φ))) ≥ c′

φ /∈ SAT ⇒ MAX(f(τ(φ))) < c′/ρ′.

In other words, f ◦ τ shows that achieving an approximation ratio ρ′ for Π′ is

NP-hard.

We now give a gap-preserving reduction from the Multidimensional 0-1 Knap-

sack Problem [2] (also known as the Packing Integer Problem [4]) to a restricted

version of APP.

The Multidimensional 0-1 Knapsack Problem (MDK):
Given: the fixed positive integer k, the dimension of the problem

Maximize:

n∑

i=1

cixi Subject to:

n∑

i=1

aijxi ≤ bj , for j = 1, . . . , k

Where: n is a positive integer; each ci, xi ∈ {0, 1}; maxi ci = 1;
the aij and bi are non-negative real numbers.

Define B = mini bi.

To see MDK as a knapsack problem, think of (b1, . . . , bk) as a capacity vector:

along each dimension d, the knapsack has capacity bd. Think of n items I1, . . . , In,

with each Ij having the requirement vector (aj1, . . . , ajk). MKDP thus maximizes

the number of k-dimensional items that can be packed in the k-dimensional knap-

sack such that along each dimension, the sum of the requirements of the packed

items does not exceed the capacity of the knapsack.

For fixed k there is a PTAS for MDK [10]. For large k, the randomized rounding

technique of [14] yields integral solutions of value Ω(OPT/d1/B). It is shown in [4]

that MDK is hard to approximate within a factor of Ω(k
1

B+1
−ǫ) for every fixed

B. Thus, randomized rounding essentially gives the best possible approximation

guarantees.

5

N1 N2 N3

A3

A2

A4

A1

(10, 10, 10)

10

requirements of items

capacity of the 3-D knapsack

110 560

(1, 1, 5)

(1, 1, 2)

(1, 1, 5)

(1, 1, 7)

(1, 11, 280)

(1, 11, 112)

(1, 11, 280)

(1, 11, 392)

Figure 1: The gap-preserving reduction from Multidimensional Knapsack to offline-
APP.

Theorem 1 Given any fixed ǫ > 0, it is NP-hard to approximate to within the

factor (1 + ǫ) offline-APP with the restrictions:

1. each capsule has a positive requirement;

2. there is a fixed constant M such that: (∀i ∈ {1, . . . , n})(∀j ∈ {1, . . . , k}) [M ≥

bj/aji].

Proof. Deferring an explanation of the two restrictions, we describe a gap-

preserving reduction from k-MDK to offline-APP.

The reduction. Consider an instance of k-MDK with capacity vector (b1, . . . , bk)

and with n items, I1, . . . , In, each Ij having requirement vector (aj1, . . . , ajk). We

create an instance of offline-APP as follows. The cluster has k nodes N1, . . . , Nk.

There are n applications A1, . . . , An, each having k capsules. Ai’s capsules are de-

noted c1
i , . . . , c

k
i ; we call cj

i Ai’s jth capsule. We assign capacities to the Ni and

requirements to the Aj in k stages. In stage s, we determine the capacity of Ns and

the requirements of the sth capsules of all applications.

Stage 1. We assign N1 capacity C(N1) = b1; for each i, we assign the first

capsule of Ai requirement r1
i = ai1.

Stage s (1 < s ≤ k). The assignments at stage s depend on those at stage s− 1.

We let rs
min = minn

i=1(ais) denote the smallest requirement along dimension s of

the items in the input to k-MDK. We then specify the scaling factor for stage s to

be:

SFs = ⌊C(Ns−1)/rs
min⌋ + 1. (3)

(Recall that (∀s)rs
min > 0.) Now we are ready to do the assignments for stage

s. Node Ns is assigned capacity C(Ns) = bi × SFs, and capsule cs
i is assigned

requirement rs
i = ais × SFs.

This completes our mapping. A simple example will illustrate how the mapping

works. Consider the instance of input T to MDK shown in the left of Fig. 1,

wherein k = 3, n = 4. We create three nodes, N1, N2, N3, and four applications,

A1, A2, A3, A4, each with 3 capsules. Consider how the three stages in our mapping

proceed.

Stage 1. We assign N1 capacity 10 and unit requirements to the first capsules of all

6

applications.

Stage 2. The scaling factor SF2 is 11, so we assign N2 capacity 110 and requirements

11 to the second capsules of all applications.

Stage 3. The scaling factor SF3 is ⌊110/s⌋ + 1 = 56, so we assign N3 capacity

560. The third capsules of the applications are assigned respective requirements

280, 112, 280, 392.

Correctness of the reduction. We show that the described mapping is a

reduction.

(⇒) Consider an instance of k-MDK with n items, I1, . . . , In. Say that there is

a packing P of size m ≤ n, involving (with no loss of generality) items I1, . . . , Im.

We thus have:
m∑

i=1

aij ≤ bj , for j = 1, . . . , k. (4)

Consider the following placement of applications A1, . . . , An on nodes N1, . . . , Nk.

If item Ii appears in packing P , then place Ai as follows: for j ∈ {1, . . . , k}, place

capsule cj
i on Nj . We claim that we can place all m applications corresponding to

the m items in P . To wit, each node Ni, for i ∈ {1, . . . , k}, has capacity (SFi× (the

capacity along dimension i of the k-dimensional knapsack)), with SFi ≥ 1. The

requirements assigned to the ith capsules of all applications are (SFi× (the sizes

along the ith dimension of the items)). Multiplying both sides of (4) by SFi, we

get

SFi ×
m∑

i=1

aij ≤ SFi × bj , for j = 1, . . . , k.

The term on the right in this inequality is Ni’s capacity, while. the term on the left

is the sum of the requirements of the ith capsules of the applications corresponding

to the m items in P . Thus, Ni can accommodate all of these applications, so there

is a placement of size m.

(⇐) Consider an instance of APP with n applications, A1, . . . , An. Say that

there is a placement L of size m ≤ n, involving (with no loss of generality)

A1, . . . , Am. For s ∈ {1, . . . , k}, let Caps denote the set of sth capsules of the

placed applications.

We make two key observations.

1. An application can be successfully placed, only if its ith capsule is placed on node

Ni. The inductive verification relies on the fact that the scaling factor (3) renders

the requirements of all sth capsules, for s > 1, larger than the capacities of nodes

N1, . . . , Ns−1. To see this, consider the kth capsules first. The only node with

sufficient capacity for these is Nk. Since no two capsules of an application may be

placed on the same node, this implies that the (k − 1)th capsules may be placed

only on Nk−1. Proceeding inductively verifies the claim.

2. the fact that the m capsules in Caps could be placed on Ns implies that the

m items I1, . . . , Im can be packed in the knapsack in the sth dimension. This is

immediate from the fact that, for all s ∈ {1, . . . , k}, the capacity of Ns and the

requirements of all sth capsules are scaled by the same factor.

7

Combining these two observations, we find that a packing of size m must exist.

Time- and space-complexity. This reduction works in time polynomial in

the size of the input. To wit, it proceeds in k stages, each involving computing

a scaling factor (which requires a division) and multiplying n + 1 numbers (the

capacity of the knapsack and the requirements of the n items along the relevant

dimension).

Consider the size of the input to offline-APP produced by our reduction. Due to

the mandated scaling of capacities and requirements, the magnitudes of the inputs

for node Nj and all jth capsules (j ∈ {1, . . . , k}) increase by a factor of O(M j).

This implies that the input size (using binary representations) increases by a factor

of O(M j/2). Overall, the input size thus increases by a factor of O(Mk). For

the mapping to be a reduction, we need this to be a constant. This explains our

two restrictions on offline-APP: (1) k and M must be constants; (2) all capsule

requirements must be positive.

Gap-preservation. Our reduction is gap-preserving because the size of the

optimal solution to offline-APP is exactly equal to the size of the optimal solution to

MDK. Formally, using the terminology in our definition of gap-preserving reduction,

we can set c = c′ = ρ = ρ′ = 1. Putting these values in (1,2), we find that the

following conditions hold:
MAX(MDK) ≥ 1 ⇒ MAX(offline-APP) ≥ 1
MAX(MDK) < 1 ⇒ MAX(offline-APP) < 1

This proves that the reduction is gap-preserving, completing the proof that offline-

APP, restricted as described in the theorem does not admit a PTAS unless P = NP .

2

4. Algorithms for Offline-APP

This section is devoted to approximation algorithms for several variants of

offline-APP. Except in Section 4.2.2, we focus on clusters that are homogeneous, in

the sense specified earlier.

4.1. Placement without the Capsule Placement Restriction

We present 2-approximate algorithms for two variants of offline-APP without

the capsule placement restriction: (1) when any capsule may be placed on any node;

(2) when each application’s capsules must be placed on the same node.

4.1.1. A first-fit based approximation algorithm

We consider the most general form of APP, in which a capsule may be placed

on any node that has enough capacity. We show that a placement algorithm based

on first-fit gives an approximation ratio that approaches 2 as the size of the cluster

grows.

The approximation algorithm FF MULTIPLE RES. Let us be given n unit-

capacity nodes, N1, . . . , Nn, and m applications, A1, A2, . . . , Am, having respective

8

requirementsc R1 ≤ R2 ≤ · · · ≤ Rm.d The algorithm considers the applications in

increasing order of their indices (which means nondecreasing order of their require-

ments). It places an application using the “first-fit” criterion, i.e., on the “first” set

of nodes where it can be accommodated, i.e., the smallest-index nodes that have

sufficient resources for all its capsules. The algorithm terminates once it has either

placed all applications or found an application that cannot be placed.

Lemma 2 FF MULTIPLE RES has an approximation ratio that approaches 2 as

the number of nodes in the cluster grows.

Proof. Consider an instance of APP in which the optimal algorithm can place

all m applications on n nodes. If FF MULTIPLE RES matches this placement,

then we are done.

Otherwise, FF MULTIPLE RES can completely place only kFF < m appli-

cations (i.e., with all capsules placed). Since all capsules have requirements less

than the capacity of a node, this implies that there is no empty node after the

placement. The placement regimen used by FF MULTIPLE RES implies that the

completely placed applications are A1, . . . , AkF F
, and that some (but not all) cap-

sules of AkF F +1 may have been placed. Importantly, in this case: at most one

node can be more than half empty. To wit, if two nodes, Ni and Nj (with i < j),

were both more than half empty, then, by our assumptions about node-capacities,

FF MULTIPLE RES would have placed all capsules from Nj into Ni. We thus have

R1 + · · · + RkF F
+ RkF F +1 ≥ R1 + · · · + RkF F

+ R′
kF F +1 ≥ n/2,

where R′
kF F +1 ≥ 0 is the sum of the requirements of the capsules of application

AkF F +1 that could be placed on the cluster. Since an optimal algorithm can do no

better than use up all node-capacity, we have R1 + · · ·+Rm ≤ n. Our assumption

about the ordering of the Ri implies that

|{A1, . . . , AkF F
}| ≥ |{AkF F +1, . . . , Am}|,

so that FF MULTIPLE RES places at least one less than half as many applications

as an optimal algorithm. Hence, the performance ratio of FF MULTIPLE RES

tends to 2 as the number of nodes grows. 2

4.1.2. On placing applications whose capsules must be colocated

We now provide a polynomial-time algorithm for a restriction of offline-APP,

whose placements are within a factor 2 of optimal. The restriction requires that

all of an application’s capsules be placed on the same node. This is equivalent to

packaging each application’s capsules into a single one which assumes all of the

application’s requirements.

Motivation. Highly parallel scientific applications that require a significant amount

of interprocess communication may insist on single-node placements. The overheads

for communication may render dispersed placements prohibitively expensive.

cThe requirement of an application is the sum of the requirements of its capsules.
dWe thus assume that applications are indexed in nondecreasing order of their requirements.

9

N1 N2 N3

A1

A2

A3

Figure 2: An example of striping-based placement.

The approximation algorithm FF SINGLE. Let us be given n unit-capacity

nodes N1, . . . , Nn and m single-capsule applications C1, . . . , Cm with respective

requirements R1 ≤ · · · ≤ Rm. The algorithm considers the applications in the indi-

cated order, placing each application using the “first-fit” criterion. The algorithm

terminates once it has either placed all applications or found an application that

cannot be placed.

The following result, which is left to the reader, yields to a proof similar to that

of Lemma 2.

Lemma 3 FF SINGLE has an approximation ratio of 2.

4.2. Placement with the Capsule Placement Restriction

We now consider APP with the capsule placement restriction. We first study a

special case—”identical” applications—and then consider the general case.

Motivation. A replicated Web server might impose the capsule placement restric-

tion, since the dispersal of capsules over multiple nodes would enhance tolerance to

node failures.

4.2.1. On placing “identical” applications

Two applications are “identical” if their sets of capsules are identical. We now

present and anayze a “striping”-based placement algorithm.

Striping-based placement. Let there be n nodes,e N0, . . . , Nn−1, and m

applications, A0, . . . , Am−1, each having k “identical” capsules, with respective re-

quirements r0 ≤ r1 ≤ · · · ≤ rk−1. The algorithm partitions the nodes into (t + 1)

sets, S1, . . . , St,, where t = ⌊n/k⌋ ≥ 1. All sets contain k ≤ n nodes with sequential

indices. The algorithm considers the Si in turn and “stripes” as many unplaced

applications on them as it can; i.e., each application is placed on nodes of the form

Ni, Ni+1, . . . , Ni+k−1 mod n. The set of nodes receiving capsules at any moment is

the current set of nodes. Fig. 2 illustrates three nodes and a number of identical

3-capsule applications. When the current set of k nodes gets exhausted and there

are more applications to place, the algorithm takes the next set of k nodes and

eIt is useful to use 0-based indexing here.

10

CAPSULES NODES

3

1

4

2

1

3

2

Figure 3: A bipartite graph indicating which capsules can be placed on which nodes

continues. The algorithm terminates when either the nodes in St are filled or all

applications have been placed. Note that there may be unused nodes if k does not

divide n.

A standard “striping’-oriented” analysis yields the following.

Lemma 4 The striping-based placement algorithm yields an approximation ratio of(
t + 1

t

)
for identical applications, where t = ⌊n/k⌋.

4.2.2. On placing arbitrary applications

We have thus far considered restrictions of offline-APP and that yield to heurisitics

with approximation ratios of 2 or better. We now find out that the general offline-

APP is much harder to compute approximately optimally (within the current state

of knowledge). For the first time, we consider clusters with heterogeneous nodes.

Our first heuristic for offline-APP yields an approximation ratio k, the maximum

number of capsules in any application.

The Max-First heuristic. This heuristic gives each application a weight which

is the requirement of its largest capsule. The heuristic considers applications in

nondecreasing order of weight and uses a bipartite graph G to model the placement

problem. G has one vertex for each capsule in the application and one for each node

in the cluster. There is an edge connecting a capsule and a node precisely when

the node is feasible for the capsule, i.e., has sufficient capacity to host it; cf. Fig. 3.

We show now that an application can be placed on the cluster if, and only if, G

admits a matching whose size equals the number of capsules in the application. This

suggests using the Maximum Matching Problem on G [7] to derive a placement. If

the maximum matching has size equal to the number of capsules in the application,

then we place each capsule on the nodes that the matching connects it to. Otherwise,

we terminate and say that the application cannot be placed.

Lemma 5 An application with k capsules can be placed on a cluster if, and only

if, there is a matching of size k in the bipartite graph G modeling its placement on

the cluster.

Proof. (⇒) A matching of size k in G specifies a one-to-one correspondence

between capsules and nodes. Since edges connote feasibility, this correspondence is

11

a valid placement.

(⇐) If G admits no matching of size k, then any placement of capsules on nodes

must end up with distinct capsules sharing the same node. This means that the

application cannot be placed without violating the capsule placement restriction.

2

Lemma 6 The Max-First placement heuristic has an approximation ratio k, where

k is the maximum number of capsules in an application.

Proof. Let us be given n nodes, N1, . . . , Nn, and a set A of m applications.

Denote by H the set of applications that Max-First places, and by O the set of

applications placed by any optimal placement algorithm. Clearly, |H| ≤ |O| ≤ m.

Let I = H ∩ O comprise the applications that both H and O place, and let R be

the set of applications that neither places.

We estimate the sizes of the sets (H \ I) and (O \ I), which comprise the ap-

plications that only one algorithm places. (If both (H \ I) and (O \ I) are empty,

then we have the claimed ratio trivially.) Construct (H \ I) by removing from

H all applications in I. Deduct from all nodes the resources reserved for the re-

moved applications. Denote the resulting nodes by N
H\I
1 , . . . , N

H\I
n . Analogously,

construct (O \ I) and deduct all resources reserved for the removed applications,

thereby producing the nodes N
O\I
1 , . . . , N

O\I
n . Say that Max-First places y appli-

cations from the set (H \ I) on nodes N
H\I
1 , . . . , N

H\I
n . Let the applications in

(A \ I) be denoted B1, . . . , By, . . . , B|A\I| when arranged in nondecreasing order

of the size of their largest capsule: letting l(X) be the requirement of the largest

capsule in application X, we have l(B1) ≤ · · · ≤ l(By) ≤ · · · ≤ l(B|A\I|). By

definition, the y applications that Max-First places are B1, . . . , By. Also, the ap-

plications that the optimal algorithm places on nodes N
O\I
1 , . . . , N

O\I
n must be

from the set {By+1, . . . , B|A\I|}. We observe that for each application in the set

{By+1, . . . , B|A\I|, the requirement of the largest capsule is ≥ l(By). We then in-

fer that Max-First will exhibit its worst approximation ratio when all applications

in (H \ I) have k capsules, each with requirement l(By), and all applications in

(O \ I) have (k − 1) capsules with requirement 0 and one capsule with requirement

l(By). Since the total capacities remaining on node N
H\I
1 , . . . , N

H\I
n and on nodes

N
O\I
1 , . . . , N

O\I
n are equal, this implies that, in the worst case, O\I would contain k

times as many applications as H\I. We can finally establishprove an approximation

ratio of k for Max-First:

|O| = |O \ I| + |I| ≤ k · |H \ I| + |I| ≤ k · (|H \ I| + |I|) = k · |H| 2

5. Algorithms for Online-APP

In this section, we develop algorithms for online-APP that always find a place-

ment for an application if one exists. Such algorithms place applications that arrive

one by one. They place a newly arrived application only if they can do so without

moving any already placed capsule. We assume a heterogeneous cluster throughout

this section.

12

5.1. Online Placement Algorithms

We use a bipartite feasibility graph GA to model the situation an online place-

ment algorithm faces when a new application, A, arrives. GA has one vertex for

each of A’s capsules and one for each node in the cluster. An edge connects a cap-

sule C with a node N just when N is feasible for C, i.e., has sufficient resources to

host C; cf. Fig. 3. As described in Section 4.2.2, a maximum matching on GA can

be used to find a placement for A if one exists.

Let A denote any online placement algorithms that operate greedily, in the

following sense. A processes the capsules of a new application A in nondecreasing

order of their degrees in the feasibility graph GA. A places a capsule C on one of its

feasible nodes, say N , terminating if no such node exists. After successfully placing

C, A removes from GA all edges connecting N to any as-yet unplaced capsules. A

repeats this process until it either completes placing A or it terminates for inability

to place a capsule. We now consider two specific greedy online placement algorithms.

The best-fit placement algorithm BF . This greedy algorithm places a capsule

on a random feasible node whose remaining capacity is minimum.

The worst-fit placement algorithm WF . This greedy algorithm places a capsule

on a random feasible node whose remaining capacity is maximum.

We now study the approximation ratios of BF and WF , RBF and RWF , re-

spectively.

Lemma 7 BF can perform arbitrarily worse than WF , so RBF admits no upper

bound.

Proof. Let there be m applications and n < m unit- capacity nodes. Say that

the first n applications to arrive have one capsule each, with requirement 1/n. BF

will place these applications on the first node. Say that the next m−n applications

to arrive have n capsules each, each having non-zero requirement. Since the first

node has no capacity left, BF will not be able to place any of these. In contrast,

WF would have placed each of the first n single-capsule applications on a separate

node, so that every node would have residual capacity (1 − 1/n) available for the

n-capsule applications. On this input sequence, then,

P (BF) ≤
n

m
P (WF), (5)

where P (A) is the number of applications that algorithm A places.

Since WF can never outperform an optimal algorithm, and since we can make

the requirements for the last m − n applications arbitrarily small, inequality (5)

implies that

RBF ≥
m

n
,

hence cannot be bounded from above. 2

Lemma 8 RWF ≥ (2 − 1/n) for an n-node cluster.

Proof. Consider a cluster with n unit-capacity nodes. Say that the first n

applications to arrive have one capsule each, with a tiny requirement ǫ. WF places

13

N1

N3

N2

N4

N1

N3

N4

N2
C1

C3

C2

C3

C2

C1

C4

0.1

0.2

0.2

0.10.1

0.1

0.3

1

1

1

1

Figure 4: Reducing Minimum-Weight Maximum Matching to Minimum-Weight
Perfect Matching.

each of these applications on a separate node, leaving each node with residual capac-

ity (1−ǫ). Next, n applications arrive, each having one capsule with requirement 1.

Since no node is empty, none of these applications can be placed. In contrast, BF

would place the first n applications on the first node. It could then place (n− 1) of

the subsequent applications on the (n − 1) empty nodes, failing to place only the

last application. On this input sequence, therefore,

P (BF) ≥

(
2 −

1

n

)
P (WF).

Since BF can never outperform an optimal algorithm, we have

RWF ≥

(
2 −

1

n

)
,

as n grows without bound. 2

5.2. Online Placement with Variable Node-Preferences

In some scenarios, especially involving heterogeneous clusters, certain capsules

may “prefer” one feasible node over another. We now study online-APP wherein

such preferences are honored. We model such scenarios by enhancing the feasibility

graph’s edges with positive weights; cf. Fig. 4 wherein lower weights mean higher

preference. The online placement problem in such scenarios is to find a maximum

matching of minimum weight in this weighted graph. This placement problem

reduces to the Minimum-Weight Perfect Matching Problem.

Minimum-Weight Perfect Matching (MWPM). A perfect matching in a graph

G is a subset of edges that “touch” each vertex exactly once. Given a real weight

ce for each edge e, the MWPM requires one to find a perfect matching M whose

weight,
∑

e∈M ce, is minimum.

The reduction works as follows. By normalization, we may assume that each

weight ω in the feasibility graph G lies in the range 0 ≤ ω ≤ 1 and that the weights

sum to 1. Let there be m capsules and n ≥ m nodes. Create an augmented graph

14

G̃ by adding n − m new, dummy capsules and unit-weight edges connecting each

with all nodes. Fig. 4 exemplifies this reduction. The lefthand graph G shows

the normalized preferences of the capsules C1, C2, C3 for their feasible nodes. The

righthand graph G̃ adds a new capsule, C4, to equalize the numbers of capsules and

nodes, and adds unit-weight edges between C4 and all nodes. (Since the weights of

the original edges do not change, they are not shown in G̃.)

Lemma 9 A matching of size m and cost c exists in the feasibility graph G of an

application with m capsules and a cluster with n ≥ m nodes if, and only if, a perfect

matching of cost (c + n − m) exists in the augmented graph G̃.

Proof. (⇒) Given a matching M of size m and cost c in G, we construct a

perfect matching M̃ in G̃ as follows. M̃ contains all edges in M , in addition to edges

that “touch” each dummy capsule. To choose these latter edges, we consider dummy

capsules one by one (in any order), and, for each, we add to M̃ an edge connecting

it to any as-yet “untouched” node. Since G admits a matching of size m, and since

each dummy capsule connects to all n nodes, G̃ is certain to have a size-n (hence,

perfect) matching. Further, since each edge that “touches” a dummy capsule has

unit weight, and there are (n − m) such edges, the cost of M̃ is c + (n − m).

(⇐) Let G̃ admit a perfect matching M̃ of cost c + n − m. Consider the set M

comprising all m edges in M̃ that do not “touch” a dummy capsule. Since M̃ is a

matching in G̃, M is a matching in G. Moreover, the cost of M is just n − m less

than the cost of M̃ , namely, c. 2

Thus, the reduction preceding Lemma 9 yields the desired placement algorithm.

We construct the feasibility graph GA for each arriving application A and augment

it to G̃A. If G̃A contains a perfect matching, then we remove the edges that “touch”

dummy capsules and obtain the desired placement. If G̃A does not contain a perfect

matching, then we know that A cannot be placed. One finds in [9, 6] poly-time

algorithms for MWPM.

6. Conclusions

6.1. Summary of Results

We have considered the offline and online versions of APP, the problem of plac-

ing distributed applications on a cluster of servers. This problem was found to be

NP-hard. We used a gap-preserving reduction from the Multidimensional Knap-

sack Problem to show that even a restricted version of offline-APP may not have

a PTAS. A heuristic that considered applications in nondecreasing order of their

“largest component” was found to provide an approximation ratio of k, the maxi-

mum number of capsules in any application. We also considered restricted versions

of offline-APP in a homogeneous cluster, finding that heuristics based on “first-fit”

or “striping” could provide approximation ratios of 2 or better.

For the online version of APP, we provided algorithms based on solving matching

problems on bipartite graphs that model the placement of a new application on a

heterogeneous cluster. These algorithms guarantee to find a placement for each

15

arriving application, if one exists. When one allows the capsules of an application

to have variable preference for the nodes of a cluster, we found that a minimum

weight perfect matching algorithm will allow one to find the “most preferred” of all

possible placements for such an application.

6.2. Ongoing and Future Work

Excluding results for some special cases, we currently have algorithms with

approximation ratios of k and 2 for APP with and without the capsule placement

restriction (k is the number of capsules in an application). We now describe ongoing

work on devising an improved approximation algorithm for APP and some directions

for future work.

6.2.1. LP-Relaxation based placement

APP can be formulated as an integer linear program (ILP). We can, therefore,

construct an approximation algorithm for APP that relaxes the ILP to a linear

program. We are currently working on determining if this algorithm can provide a

better approximation that our current algorithms.

We now describe our LP-relaxation based placement algorithm. Say that we have

n nodes and m applications. By possibly adding dummy capsules with requirement

0, each application can be thought of as having n capsules. Denote by rij the

requirement of capsule j of application i, and by Ck the capacity of node k. We

construct the variable xijk with the following meaning:

xijk =

{
1 if capsule j of application i is placed on node k
0 otherwise

Additionally, define:

xij =

n∑

k=1

xijk and xi =

n∑

j=1

xij

The placement problem can be recast as the following Integer Linear Program:

Maximize
m∑

i=1

xi

Subject to

(∀i, k)

n∑

j=1

xijk ≤ 1

(∀k)

n∑

i=1

m∑

j=1

xijk × rik ≤ Ck

(∀i) xi1 = · · · = xin.

The first step of the LP-relaxation based placement consists of solving the Linear

Program obtained by removing the restriction, xijk ∈ {0, 1} and instead allowing

16

each xijk to take real values in the range 0 ≤ xijk ≤ 1. Denote the value assigned

to xijk in this step by x′
ijk. This is followed by a step in which xijk are converted

back to integers using the following rounding:

xijk =

{
1 if x′

ijk ≥ 0.5

0 otherwise

Finally, the capacities of some nodes may have been exceeded due to the preced-

ing rounding. We remove capsules placed such nodes, in nonincreasing order of

requirements, until the remaining capsules fit on the node. Observe that removing

a capsule of an application implies also removing all of its other capsules.

6.2.2. Future directions

We have focused on applications that have requirements for a single resource.

Realistic applications exercise multiple resources (such as CPU, memory, disk, net-

work bandwidth) on a server, hence, may want guarantees for more than one re-

source. Our approach for online placement can be extended to this scenario in a

straightforward manner. Recall that in online-APP we were satisfied with finding

a placement for a new application if one existed. We can ensure this even when

applications have requirements for multiple resources. A node is now said to be

feasible for a capsule if, and only if, it has enough resources of each type to be able

to meet the capsule’s requirement. A maximum matching on the resulting bipartite

graph would yield a placement for a new application if one exists. For offline-APP,

however, our goal was to maximize the number of applications that we could place

on the cluster. Solving the offline problem when multiple resources are involved

would be interesting future work.

Acknowledgements

The research of A. Rosenberg was supported in part by NSF grant CCF-0342417.

The research of P. Shenoy and B. Urgaonkar was supported in part by NFS grants

CNS-0323597, CCR-9984030, and EIA-0080119.

References

1. K. Appleby, S. Fakhouri, L. Fong, M. K. G. Goldszmidt, S. Krishnakumar, D. Pazel,
J. Pershing, and B. Rochwerger. Oceano - SLA-based Management of a Comput-
ing Utility. In Proceedings of the IFIP/IEEE Symposium on Integrated Network
Management, May 2001.

2. A. K. Chandra, D. S. Hirschberg, and C. K. Wong. Approximate Algorithms for
Some Generalized Knapsack Problems. In Theoretical Computer Science, volume 3,
pages 293–304, 1976.

3. J. Chase and R. Doyle. Balance of Power: Energy Management for Server Clusters.
In Proceedings of the Eighth Workshop on Hot Topics in Operating Systems (HotOS-
VIII), Elmau, Germany, May 2001.

4. C. Chekuri and S. Khanna. On Multi-dimensional Packing Problems. In In Proceed-
ings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
January 1999.

17

5. C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
2000.

6. W. Cook and A. Rohe. Computing Minimum-weight Perfect Matchings. In IN-
FORMS Journal on Computing, pages 138–148, 1999.

7. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1991.

8. D. S. Hochbaum (Ed.). Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, Boston, MA, July 1996.

9. J. Edmonds. Maximum Matching and a Polyhedron with 0,1 - Vertices. In Journal
of Research of the National Bureau of Standards 69B, 1965.

10. A. M. Friexe and M. R. B. Clarke. Approximation Algorithms for the m-
dimensional 0-1 Knapsack Problem: Worst-case and Probabilistic Analyses. In
European Journal of Operational Research 15(1), 1984.

11. M. Garey and D. Johnson. Computers and Intractibility: A Guide to the Theory
of NP-completeness. W. H. Freeman and Company, New York, January 1979.

12. M. Moser, D. P. Jokanovic, and N. Shiratori. An Algorithm for the Multidimen-
sional Multiple-Choice Knapsack Problem. In IEICE Trans. Fundamentals Vol.
E80-A No. 3, March 1997.

13. A compendium of NP optimization problems. http://www.nada.kth.se/~viggo/

problemlist/compendium.html.

14. P. Raghavan and C. D. Thompson. Randomized Rounding: a Technique for
Provably Good Algorithms and Algorithmic Proofs. In Combinatorica, volume 7,
pages 365–374, 1987.

15. S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-Driven Server Migration for
Internet Data Centers. In Proceedings of the Tenth International Workshop on
Quality of Service, Miami, FL, 2002.

16. D. B. Shmoys and E. Tardos. An Approximation Algorithm for the Generalized
Assignment Problem. In Mathematical Programming A, 62:461-74, 1993.

17. B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource Overbooking and Application
Profiling in Shared Hosting Platforms. In Proceedings of the Fifth USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 2002), Boston, MA,
December 2002.

18. M. J. Beeson, Foundations of Constructive Mathematics (Springer, Berlin, 1985).

19. K. L. Clark, “Negations as failure,” in Logic and Data Bases, eds. H. Gallaire and
J. Winker (Plenum Press, New York, 1973) pp. 293–306.

20. D. Dolve, “Unanimity in an unknown and unreliable environment,” Proc. 22nd
Annual Symposium on Foundations of Computer Science, Nashville, TN, Oct. 1981,
pp. 159–168.

21. W. L. Gewirtz, “Investigations in the theory of descriptive complexity,” Ph. D.
Thesis, New York University, 1974.

22. M. Joliat, “A simple technique for partial elimination of unit productions from
LR(k) parsers,” IEEE Trans. Comput. C-27 (1976) 753–764.

23. R. Lorentz and D. B. Benson, “Deterministic and nondeterministic flow-chart in-
terpretations,” J. Comput. System Sci. 27 (1983) 400–433.

24. R. Tamassia, C. Batini and M. Talamo, “An algorithm for automatic layout of
entity relationship diagrams,” in Entity-Relationship Approach to Software Engi-

18

neering, Proc. 3rd Int. Conf. on Entity-Relationship Approach, eds. C. G. Davis, S.
Jajodia, P. A. Ng and R. T. Yeh (North-Holland, Amsterdam, 1983) pp. 421–439.

Appendix A:

7. NP-Hardness of APP

We begin with an auxiliary problem.

The Single-capsule APP (DEC MAX CAP).
Given: n empty nodes N1, . . . , Nn; m 1-capsule applications C1, . . . , Cm; target integer k
Decide: Does there exist a placement of size k?

Lemma A.1 DEC MAX CAP is NP-complete.

Proof sketch: Clearly, DEC MAX CAP is in NP. One merely must check the validity

of a given putative placement of k capsules, which amounts to checking that the

sum of the requirements of all the capsules placed on each Ni does not exceed Ci.

A simple reduction from BIN-PACKING [11] shows that DEC MAX CAP is

NP-Hard.

BIN-PACKING.
Given: m objects O1, . . . , Om of sizes s1, . . . , sm, respectively; target integer k
Decide: Can all the objects can be placed into k unit-capacity bins?.

The reader can verify easily that the following construction of an input to

DEC MAX CAP from an input to BIN-PACKING is a poly-time reduction. First,

for each object Oi, we provide a capsule Ci whose requirement equals Oi’s size.

Next, we provide k nodes, each with unit capacity. These node- and capsule-sets,

along with the target integer m, comprise the input to DEC MAX CAP.

General APP (DEC MAX APP).
Given:: n empty nodes N1, . . . , Nn; m applications A1, . . . , Am; a target integer k
Decide: Does there exist a placement of size k?

Lemma A.2 DEC MAX APP is NP-complete.

Proof sketch: One needs only mimic the proof of Lemma A.1, since DEC MAX APP

becomes DEC MAX CAP when each application has just one capsule.

General APP with the Capsule Placement Restriction (DEC MAX APP RES).
Given:: n empty nodes N1, . . . , Nn; m applications A1, . . . , Am; a target integer k
Decide: Does there exist a placement of size k that satisfies the capsule placement restriction?

Lemma A.3 DEC MAX APP RES is NP-complete.

Proof sketch: Again, DEC MAX APP RES becomes DEC MAX CAP when each

application has just one capsule.

Since DEC MAX APP RES is the decision version of APP, we finally have

Theorem A.1 APP is NP-hard.

19

